If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=145
We move all terms to the left:
3x^2+x-(145)=0
a = 3; b = 1; c = -145;
Δ = b2-4ac
Δ = 12-4·3·(-145)
Δ = 1741
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1741}}{2*3}=\frac{-1-\sqrt{1741}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1741}}{2*3}=\frac{-1+\sqrt{1741}}{6} $
| -5n-5(1+4n)=195 | | 5x-13=-4x+14 | | 282=-y+130 | | -(8a-6)-4a=90 | | 7x-16=24 | | 2x=60/10 | | 5(7p-2)=-38+7p | | 4x-5(1)=20 | | 4(1)-5y=20 | | 2/5+1/3t=1/2 | | 216=6(7p+1) | | 2/3(12x-9)-8=4+2x | | 3/x-2=-2x+7 | | 6x-5=5x-6 | | 24a-22=4/3(3-6a) | | 67^x=0 | | 4a-3a-7=21 | | 12+6(z-2)=5z+1* | | -2•7-9c+7=-15 | | -27-9c+7=-15 | | (7x+8)=(5x+32) | | x3+12x+-12=0 | | /–10.9p+3.9=–9.18 | | B.5(x+2)=4x+12 | | 7y+y=6y-6 | | 12(x+2)=3(4x+)+12 | | -41=-2/5(45n=60)=n | | 8-5y=5(-y+6) | | 38.34+0.50m=100 | | -4x-94=-15x+104 | | 0.12-0.03(x+3)=-0.03(1-x) | | -15=5(3q-20)-5q |